Eco-efficient aircraft routing and the weather uncertainty

Dr. Feijia Yin

Aircraft Noise and Climate Effects Faculty of Aerospace Engineering, TU Delft f.yin@tudelft.nl

Aviation climate impact mitigation by 2030, 06/09/2023, University of Bristol

Aviation climate impact

- Aviation emissions perturb the atmosphere and affect the climate, for example warming the Earth surface.
- We distinguish:
 - 1. CO₂ effects
 - 2. Non-CO₂ effects

CO₂ and non-CO₂ effects

	CO ₂ effects	Non-CO ₂ effects
Time-scale	CO ₂ emissions persist in the atmosphere for decades .	Shorter timescale (hours in the case of contrails, months in the case of ozone changes, and years in the case of methane changes)
Climate impact	It is only dependent on the amount of fuel used.	Strong dependency on geographic position, altitude, weather conditions and time of emission
Contribution	They account for $\sim 1/3$ of the net aviation radiative forcing.	They account for ~ 2/3 of the net aviation radiative forcing.
Confidence levels	High	Medium/Low

Mitigation potential of climate-optimized trajectories

 Non-CO₂ effects of aviation are highly dependent on time and location of emission

→ potential of mitigating the climate impact of aviation by <u>optimizing the aircraft</u> <u>trajectories.</u>

• Previous projects results:

Delft

- **REACT4C:** 25% reduction in the climate impact with 0.5% increase in the operational costs.
- ATM4E: 75% 85% of the overall climate impact mitigation potential can be achieved modifying 25% of the routes.

Objective of this work

To identify aircraft trajectories:

- which allows a substantial reduction in aviation climate impact, leaving costs nearly unchanged ("eco-efficient")
- under various weather patterns.

• What is their **mitigation potential**?

Delft

 How do they change due to atmospheric natural variability?

Algorithmic climate change functions

 A set of prototype algorithmic Climate Change Functions (aCCFs) estimate the flight climate impact in terms of Average Temperature Response over a time horizon of 20 years (ATR20) from contrail cirrus, NO_x-O₃, NO_x-methane, water vapor

Contrail-cirrus aCCFs (coloured contour) (in K km⁻¹) and geopotential height (black contour) (in m² s⁻²) on 18 December 2015 at 250 hPa: (a) 12:00 UTC and (b) 00:00 UTC.

Yin et al., 2023

Analysis of eco-efficient aircraft trajectories

Simulations set-up:

- Duration: 1-31 Jan. 2018 (31 days)
- Air Traffic Sample: Top 100 routes by ASK for the ECAC area in 2018
- Aircraft/Engine: A320/CFM56-5B4
- **Departure time:** 00:00 UTC
- Optimization objectives:
 - 1. Simple Operating Costs (SOC) \rightarrow fuel and flight time
 - 2. Average Temperature Response over 20 years (ATR20)
 - \rightarrow CO₂ and non-CO₂ effects

Castino, Yin, et al., Geoscientific Model Development Discussion, pre-print, 2023.

Flights properties along Pareto fronts

Castino, Yin, et al., Geoscientific Model Development Discussion, pre-print, 2023.

Monthly mean changes in CO₂ and non- CO₂ effects

Figure: Monthly mean absolute **Climate-optimal** differences in ATR20 components. The increase in CO₂ emissions is • compensated by the reduction in non- CO_2 effects. Increasing relative • The non-CO₂ effects reduction are weight of simple operating costs largely affected by contrails impact. Contrails NOx-Ozone NOx-Methane Water Cost-optimal CO₂ -2.5-2.0-1.5-1.0-0.50.0 $\times 10^{-7}$ Change in Average Temperature

Response over 20 years [K]

Daily variability of Pareto front

Castino, Yin et al., Geoscientific Model Development Discussion, pre-print, 2023.

Daily variability of climate impact reduction

Summary and ongoing work

- The analysis showed that -10% climate impact (ATR20) can be achieved with +1% in the operating costs (SOC).
- Daily variability exists for the climate mitigation potentials.
- Contrails and NO_x play different importance on different days, which requires further investigation.

Ongoing work

 Currently analysing 1-year simulations to consider the variability of eco-efficient conditions due to atmospheric natural variability for the contrail-NO_x climate impact mitigation.

Forecast of ice supersaturation

About 15% of all flight distances occur in ice-supersaturated regions (ISSRs, relative humidity with respect to ice (Rhi)>100%);

Unreliable forecast of persistent contrail formation¹, due to:

- A lack of relative humidity measurements at cruise levels;
- Underestimation of ISSRs in current Numerical Weather Prediction (NWP) models.

Figure taken from Gierens et al., 2012, ECMWF data 1. Sperber and Gierens, EGUsphere [preprint], 2023.

Representation of ice supersaturation in Numerical Weather Prediction models

Figure taken from Gierens et al., ACP, 2022.

Significant differences in the representation of ice supersaturation between different NWP models (e.g., ICON-EU vs. ERA-5).

Forced consumption of all excess water vapour once an ice cloud forms (saturation adjustment).

A new concept to allow the decay of humidity is required.

BeCoM methodology to improve ice supersaturation prediction

TUDEIT

Assimilation of observational data and direct camera images using artificial intelligence

Operational and

of humidity &

characterization

new measurements

Better representation of ice supersaturation in NWP model (Sperber and Gierens, EGUsphere [preprint], 2023.)

Future work of trajectory optimization for contrail avoidance

- Assess the impact of improved forecast of ISSRs through trajectory calculations.
- Evaluate the climate impact reduction potential via trajectory optimization measure.

References

[1] Lee, D. S., et al.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmospheric Environment, 244, https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.

[2] Matthes, S., et al.: Climate-optimized trajectories and robust mitigation potential: Flying atm4e, Aerospace, 7, 1–15, https://doi.org/10.3390/aerospace7110156, 2020.

[3] Grewe, V., et al.: Reduction of the air traffic's contribution to climate change: A REACT4C case study, Atmospheric Environment, 94, 616-625, https://doi.org/10.1016/j.atmosenv.2014.05.059, 2014.

[4] Lührs, B., et al.: Climate impact mitigation potential of European air traffic in a weather situation with strong contrail formation, Aerospace, 8, 1–15, https://doi.org/10.3390/aerospace8020050, 2021.

[5] Frömming, C., et al.: Influence of weather situation on non-CO₂ aviation climate effects: The REACT4C climate change functions, Atmospheric Chemistry and Physics, 21, 9151–9172, https://doi.org/10.5194/acp-21-9151-2021, 2021.

[6] Yamashita, H., et al.: Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0, Geoscientific Model Development, 9, 3363–3392, https://doi.org/10.5194/gmd-9-3363-2016, 2016.

[7] Yin, F., et al.: Impact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic flights, 65, Transport Research Part D: Transport and Environment, <u>https://doi.org/10.1016/j.trd.2018.09.017</u>, 2018.

[8] Sperber and Gierens: Towards a more reliable forecast of ice supersaturation: Concept of a one-moment ice cloud scheme that avoids saturation adjustment, EGUsphere [preprint], <u>https://doi.org/10.5194/egusphere-2023-914</u>, 2023.

[9] Castino, F., et al.: Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2023-88, 2023.

- Additional information can be found on the following project websites:
 - FlyATM4E: https://flyatm4e.eu/
 - BeCoM: https://www.becom-project.eu

Thank you for your attentions!

